Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Sci Rep ; 14(1): 3447, 2024 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342953

RESUMO

The tetrasubstituted naphthalene diimide compound QN-302 binds to G-quadruplex (G4) DNA structures. It shows high potency in pancreatic ductal adenocarcinoma (PDAC) cells and inhibits the transcription of cancer-related genes in these cells and in PDAC animal models. It is currently in Phase 1a clinical evaluation as an anticancer drug. A study of structure-activity relationships of QN-302 and two related analogues (CM03 and SOP1247) is reported here. These have been probed using comparisons of transcriptional profiles from whole-genome RNA-seq analyses, together with molecular modelling and molecular dynamics simulations. Compounds CM03 and SOP1247 differ by the presence of a methoxy substituent in the latter: these two compounds have closely similar transcriptional profiles. Whereas QN-302 (with an additional benzyl-pyrrolidine group), although also showing down-regulatory effects in the same cancer-related pathways, has effects on distinct genes, for example in the hedgehog pathway. This distinctive pattern of genes affected by QN-302 is hypothesized to contribute to its superior potency compared to CM03 and SOP1247. Its enhanced ability to stabilize G4 structures has been attributed to its benzyl-pyrrolidine substituent fitting into and filling most of the space in a G4 groove compared to the hydrogen atom in CM03 or the methoxy group substituent in SOP1247.


Assuntos
Carcinoma Ductal Pancreático , Quadruplex G , Neoplasias Pancreáticas , Animais , Proteínas Hedgehog , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Perfilação da Expressão Gênica , Pirrolidinas , Ligantes
2.
Molecules ; 29(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276583

RESUMO

DNA requires hydration to maintain its structural integrity. Crystallographic analyses have enabled patterns of water arrangements to be visualized. We survey these water motifs in this review, focusing on left- and right-handed duplex and quadruplex DNAs, together with the i-motif. Common patterns of linear spines of water organization in grooves have been identified and are widely prevalent in right-handed duplexes and quadruplexes. By contrast, a left-handed quadruplex has a distinctive wheel of hydration populating the almost completely circular single groove in this structure.


Assuntos
DNA Forma Z , Quadruplex G , Água/química , DNA/química , Fenômenos Químicos , Conformação de Ácido Nucleico
3.
Org Biomol Chem ; 22(1): 55-58, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37970888

RESUMO

GC-rich sequences can fold into G-quadruplexes and i-motifs and are known to control gene expression in many organisms. The potent G-quadruplex experimental anticancer drug QN-302 down-regulates a number of cancer-related genes, in particular S100P. Here we show this ligand has strong opposing effects with i-motif DNA structures and is one of the most potent i-motif destabilising agents reported to date. QN-302 down-regulates the expression of numerous cancer-related genes by pan-quadruplex targeting. QN-302 exhibits exceptional combined synergistic effects compared to many other G-quadruplex and i-motif interacting compounds. This work further emphasises the importance of considering G-quadruplex and i-motif DNA structures as one dynamic system.


Assuntos
Quadruplex G , Neoplasias , Humanos , DNA/genética , DNA/química , Regiões Promotoras Genéticas/genética , Neoplasias/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Neoplasias
4.
Nat Rev Chem ; 7(11): 747-748, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37828114
5.
Molecules ; 28(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985425

RESUMO

The naphthalene diimide compound QN-302, designed to bind to G-quadruplex DNA sequences within the promoter regions of cancer-related genes, has high anti-proliferative activity in pancreatic cancer cell lines and anti-tumor activity in several experimental models for the disease. We show here that QN-302 also causes downregulation of the expression of the S100P gene and the S100P protein in cells and in vivo. This protein is well established as being involved in key proliferation and motility pathways in several human cancers and has been identified as a potential biomarker in pancreatic cancer. The S100P gene contains 60 putative quadruplex-forming sequences, one of which is in the promoter region, 48 nucleotides upstream from the transcription start site. We report biophysical and molecular modeling studies showing that this sequence forms a highly stable G-quadruplex in vitro, which is further stabilized by QN-302. We also report transcriptome analyses showing that S100P expression is highly upregulated in tissues from human pancreatic cancer tumors, compared to normal pancreas material. The extent of upregulation is dependent on the degree of differentiation of tumor cells, with the most poorly differentiated, from more advanced disease, having the highest level of S100P expression. The experimental drug QN-302 is currently in pre-IND development (as of Q1 2023), and its ability to downregulate S100P protein expression supports a role for this protein as a marker of therapeutic response in pancreatic cancer. These results are also consistent with the hypothesis that the S100P promoter G-quadruplex is a potential therapeutic target in pancreatic cancer at the transcriptional level for QN-302.


Assuntos
Quadruplex G , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Expressão Gênica , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas
6.
Nucleic Acids Res ; 51(8): 3540-3555, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36919604

RESUMO

Combination cancer chemotherapy is one of the most useful treatment methods to achieve a synergistic effect and reduce the toxicity of dosing with a single drug. Here, we use a combination of two well-established anticancer DNA intercalators, actinomycin D (ActD) and echinomycin (Echi), to screen their binding capabilities with DNA duplexes containing different mismatches embedded within Watson-Crick base-pairs. We have found that combining ActD and Echi preferentially stabilised thymine-related T:T mismatches. The enhanced stability of the DNA duplex-drug complexes is mainly due to the cooperative binding of the two drugs to the mismatch duplex, with many stacking interactions between the two different drug molecules. Since the repair of thymine-related mismatches is less efficient in mismatch repair (MMR)-deficient cancer cells, we have also demonstrated that the combination of ActD and Echi exhibits enhanced synergistic effects against MMR-deficient HCT116 cells and synergy is maintained in a MMR-related MLH1 gene knockdown in SW620 cells. We further accessed the clinical potential of the two-drug combination approach with a xenograft mouse model of a colorectal MMR-deficient cancer, which has resulted in a significant synergistic anti-tumour effect. The current study provides a novel approach for the development of combination chemotherapy for the treatment of cancers related to DNA-mismatches.


Assuntos
Neoplasias Colorretais , Equinomicina , Humanos , Animais , Camundongos , Dactinomicina/química , Equinomicina/química , Timina , Sequência de Bases , Sítios de Ligação , Conformação de Ácido Nucleico , DNA/química
7.
Biophys J ; 121(24): 4874-4881, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35999813

RESUMO

Left-handed G quadruplexes (LHG4) have been recently discovered as a new class of G quadruplexes. The biological functions of LHG4s are still unknown, but they share a striking resemblance to Z-DNA in their helicity and jagged phosphate backbone. To further understand structural features of the LHG4s that define their left handedness, we have employed human-interpretable machine-learning methods to classify right- and left-handed G4s purely based on torsional angle analysis. Our results reveal the importance of the α, ß, δ, and χ angles in left-handed structuring across both Z-DNAs and LHG4s. Our analysis may serve as the first step to understanding the conditions of formation for LHG4s and their potential biological relevance.


Assuntos
DNA de Forma B , Quadruplex G , Humanos , DNA/genética , DNA/química
8.
Nucleic Acids Res ; 50(15): 8867-8881, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35871296

RESUMO

The use of multiple drugs simultaneously targeting DNA is a promising strategy in cancer therapy for potentially overcoming single drug resistance. In support of this concept, we report that a combination of actinomycin D (ActD) and echinomycin (Echi), can interact in novel ways with native and mismatched DNA sequences, distinct from the structural effects produced by either drug alone. Changes in the former with GpC and CpG steps separated by a A:G or G:A mismatch or in a native DNA with canonical G:C and C:G base pairs, result in significant asymmetric backbone twists through staggered intercalation and base pair modulations. A wobble or Watson-Crick base pair at the two drug-binding interfaces can result in a single-stranded 'chair-shaped' DNA duplex with a straight helical axis. However, a novel sugar-edged hydrogen bonding geometry in the G:A mismatch leads to a 'curved-shaped' duplex. Two non-canonical G:C Hoogsteen base pairings produce a sharply kinked duplex in different forms and a four-way junction-like superstructure, respectively. Therefore, single base pair modulations on the two drug-binding interfaces could significantly affect global DNA structure. These structures thus provide a rationale for atypical DNA recognition via multiple DNA intercalators and a structural basis for the drugs' potential synergetic use.


Assuntos
DNA , Pareamento de Bases , DNA/química , DNA/genética , Ligação de Hidrogênio , Estrutura Molecular , Conformação de Ácido Nucleico
9.
Nucleic Acids Res ; 49(16): 9526-9538, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-33836081

RESUMO

The use of a small molecule compound to reduce toxic repeat RNA transcripts or their translated aberrant proteins to target repeat-expanded RNA/DNA with a G4C2 motif is a promising strategy to treat C9orf72-linked disorders. In this study, the crystal structures of DNA and RNA-DNA hybrid duplexes with the -GGGCCG- region as a G4C2 repeat motif were solved. Unusual groove widening and sharper bending of the G4C2 DNA duplex A-DNA conformation with B-form characteristics inside was observed. The G4C2 RNA-DNA hybrid duplex adopts a more typical rigid A form structure. Detailed structural analysis revealed that the G4C2 repeat motif of the DNA duplex exhibits a hydration shell and greater flexibility and serves as a 'hot-spot' for binding of the anthracene-based nickel complex, NiII(Chro)2 (Chro = Chromomycin A3). In addition to the original GGCC recognition site, NiII(Chro)2 has extended specificity and binds the flanked G:C base pairs of the GGCC core, resulting in minor groove contraction and straightening of the DNA backbone. We have also shown that Chro-metal complexes inhibit neuronal toxicity and suppresses locomotor deficits in a Drosophila model of C9orf72-associated ALS. The approach represents a new direction for drug discovery against ALS and FTD diseases by targeting G4C2 repeat motif DNA.


Assuntos
Esclerose Amiotrófica Lateral/tratamento farmacológico , Proteína C9orf72/genética , DNA Forma A/ultraestrutura , Demência Frontotemporal/tratamento farmacológico , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/patologia , Antracenos/química , Antracenos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , DNA/efeitos dos fármacos , DNA/ultraestrutura , DNA Forma A/efeitos dos fármacos , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Conformação de Ácido Nucleico/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
10.
J Biol Chem ; 296: 100553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33744292

RESUMO

The determination of the double helical structure of DNA in 1953 remains the landmark event in the development of modern biological and biomedical science. This structure has also been the starting point for the determination of some 2000 DNA crystal structures in the subsequent 68 years. Their structural diversity has extended to the demonstration of sequence-dependent local structure in duplex DNA, to DNA bending in short and long sequences and in the DNA wound round the nucleosome, and to left-handed duplex DNAs. Beyond the double helix itself, in circumstances where DNA sequences are or can be induced to unwind from being duplex, a wide variety of topologies and forms can exist. Quadruplex structures, based on four-stranded cores of stacked G-quartets, are prevalent though not randomly distributed in the human and other genomes and can play roles in transcription, translation, and replication. Yet more complex folds can result in DNAs with extended tertiary structures and enzymatic/catalytic activity. The Protein Data Bank is the depository of all these structures, and the resource where structures can be critically examined and validated, as well as compared one with another to facilitate analysis of conformational and base morphology features. This review will briefly survey the major structural classes of DNAs and illustrate their significance, together with some examples of how the use of the Protein Data Bank by for example, data mining, has illuminated DNA structural concepts.


Assuntos
DNA/química , Bases de Dados de Proteínas , Conformação de Ácido Nucleico , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética
11.
Pharmaceuticals (Basel) ; 15(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35056064

RESUMO

The role of G-quadruplexes in human cancers is increasingly well-defined. Accordingly, G-quadruplexes can be suitable drug targets and many small molecules have been identified to date as G-quadruplex binders, some using computer-based design methods and co-crystal structures. The role of bound water molecules in the crystal structures of G-quadruplex-small molecule complexes has been analyzed in this study, focusing on the water arrangements in several G-quadruplex ligand complexes. One is the complex between the tetrasubstituted naphthalene diimide compound MM41 and a human intramolecular telomeric DNA G-quadruplex, and the others are in substituted acridine bimolecular G-quadruplex complexes. Bridging water molecules form most of the hydrogen-bond contacts between ligands and DNA in the parallel G-quadruplex structures examined here. Clusters of structured water molecules play essential roles in mediating between ligand side chain groups/chromophore core and G-quadruplex. These clusters tend to be conserved between complex and native G-quadruplex structures, suggesting that they more generally serve as platforms for ligand binding, and should be taken into account in docking and in silico studies.

12.
Nucleic Acids Res ; 49(1): 519-528, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33290519

RESUMO

Quadruplex DNAs can fold into a variety of distinct topologies, depending in part on loop types and orientations of individual strands, as shown by high-resolution crystal and NMR structures. Crystal structures also show associated water molecules. We report here on an analysis of the hydration arrangements around selected folded quadruplex DNAs, which has revealed several prominent features that re-occur in related structures. Many of the primary-sphere water molecules are found in the grooves and loop regions of these structures. At least one groove in anti-parallel and hybrid quadruplex structures is long and narrow and contains an extensive spine of linked primary-sphere water molecules. This spine is analogous to but fundamentally distinct from the well-characterized spine observed in the minor groove of A/T-rich duplex DNA, in that every water molecule in the continuous quadruplex spines makes a direct hydrogen bond contact with groove atoms, principally phosphate oxygen atoms lining groove walls and guanine base nitrogen atoms on the groove floor. By contrast, parallel quadruplexes do not have extended grooves, but primary-sphere water molecules still cluster in them and are especially associated with the loops, helping to stabilize loop conformations.


Assuntos
Quadruplex G , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Água
14.
Molecules ; 25(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33227941

RESUMO

The stabilisation of G-quadruplexes (G4s) by small-molecule compounds is an effective approach for causing cell growth arrest, followed by cell death. Some of these compounds are currently being developed for the treatment of human cancers. We have previously developed a substituted naphthalene diimide G4-binding molecule (CM03) with selective potency for pancreatic cancer cells, including gemcitabine-resistant cells. We report here that CM03 and the histone deacetylase (HDAC) inhibitor SAHA (suberanilohydroxamic acid) have synergistic effects at concentrations close to and below their individual GI50 values, in both gemcitabine-sensitive and resistant pancreatic cancer cell lines. Immunoblot analysis showed elevated levels of γ-H2AX and cleaved PARP proteins upon drug combination treatment, indicating increased levels of DNA damage (double-strand break events: DSBs) and apoptosis induction, respectively. We propose that the mechanism of synergy involves SAHA relaxing condensed chromatin, resulting in higher levels of G4 formation. In turn, CM03 can stabilise a greater number of G4s, leading to the downregulation of more G4-containing genes as well as a higher incidence of DSBs due to torsional strain on DNA and chromatin structure.


Assuntos
Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quadruplex G , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Vorinostat/uso terapêutico , Linhagem Celular Tumoral , Dano ao DNA , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Sinergismo Farmacológico , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Neoplasias Pancreáticas/patologia , Vorinostat/química , Vorinostat/farmacologia , Gencitabina
15.
ACS Med Chem Lett ; 11(8): 1634-1644, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32832034

RESUMO

Targeting of genomic quadruplexes is an approach to treating complex human cancers. We describe a series of tetra-substituted naphthalene diimide (ND) derivatives with a phenyl substituent directly attached to the ND core. The lead compound (SOP1812) has 10 times superior cellular and in vivo activity compared with previous ND compounds and nanomolar binding to human quadruplexes. The pharmacological properties of SOP1812 indicate good bioavailability, which is consistent with the in vivo activity in xenograft and genetic models for pancreatic cancer. Transcriptome analysis shows that it down-regulates several cancer gene pathways, including Wnt/ß-catenin signaling.

16.
Sci Rep ; 10(1): 12192, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699225

RESUMO

Gemcitabine is a drug of choice in the treatment of human pancreatic cancer. Chemo-resistance to this drug is common and has been attributed to a variety of distinct mechanisms, involving > 100 genes. A recently developed small-molecule G-quadruplex ligand, the trisubstituted naphthalene diimide compound CM03, has previously been shown to have equivalent potency to gemcitabine in the pancreatic cancer cell line MIA PaCa-2. We report here on cell lines of increased resistance to gemcitabine that have been generated from this line, with the most resistant having 1,000-fold reduced sensitivity to gemcitabine. These resistant lines retain nM sensitivity to CM03. The molecular basis for the retention of potency by this G-quadruplex ligand has been examined using whole transcriptome data analysis with RNA-seq. This has revealed that the pattern of pathways down regulated by CM03 in the parental MIA PaCa-2 cell line is largely unaffected in the gemcitabine-resistant line. The analysis has also shown that the expression patterns of numerous genes involved in gemcitabine sensitivity are down regulated in the resistant line upon CM03 treatment. These results are supportive of the concept that G-quadruplex small molecules such as CM03 have potential for clinical use in the treatment of gemcitabine-resistant human pancreatic cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Quadruplex G , Imidas/farmacologia , Naftalenos/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Imidas/química , Ligantes , Naftalenos/química , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Repressoras , Regulação para Cima/efeitos dos fármacos , Gencitabina , Neoplasias Pancreáticas
18.
ACS Med Chem Lett ; 11(5): 991-999, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32435416

RESUMO

Interactions are reported of three representative naphthalenediimide derivatives with three quadruplex targets, from the promoter region of the telomerase (hTERT) gene, a human telomeric DNA quadruplex, and a telomeric RNA quadruplex (TERRA). Thermal melting studies showed that these compounds strongly stabilize the quadruplexes, with weak stabilization of a duplex DNA. Binding studies by surface plasmon resonance and fluorescence spectroscopy found that the compounds bind to the quadruplexes with nanomolar equilibrium dissociation constants. Plausible topologies for the quadruplex complexes were deduced from CD spectra, which together with the surface plasmon resonance data indicate that the quadruplexes with parallel quadruplex folds are preferred by two compounds, which was confirmed by qualitative molecular modeling.

19.
20.
Nucleic Acids Res ; 47(16): 8899-8912, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31361900

RESUMO

DNA mismatches are highly polymorphic and dynamic in nature, albeit poorly characterized structurally. We utilized the antitumour antibiotic CoII(Chro)2 (Chro = chromomycin A3) to stabilize the palindromic duplex d(TTGGCGAA) DNA with two G:G mismatches, allowing X-ray crystallography-based monitoring of mismatch polymorphism. For the first time, the unusual geometry of several G:G mismatches including syn-syn, water mediated anti-syn and syn-syn-like conformations can be simultaneously observed in the crystal structure. The G:G mismatch sites of the d(TTGGCGAA) duplex can also act as a hotspot for the formation of alternative DNA structures with a GC/GA-5' intercalation site for binding by the GC-selective intercalator actinomycin D (ActiD). Direct intercalation of two ActiD molecules to G:G mismatch sites causes DNA rearrangements, resulting in backbone distortion to form right-handed Z-DNA structures with a single-step sharp kink. Our study provides insights on intercalators-mismatch DNA interactions and a rationale for mismatch interrogation and detection via DNA intercalation.


Assuntos
Antibióticos Antineoplásicos/química , Cromomicina A3/química , DNA Forma Z/química , Dactinomicina/química , Substâncias Intercalantes/química , Oligodesoxirribonucleotídeos/química , Antibióticos Antineoplásicos/metabolismo , Pareamento Incorreto de Bases , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Cromomicina A3/metabolismo , Cristalização , Cristalografia por Raios X , DNA Forma Z/metabolismo , Dactinomicina/metabolismo , Humanos , Substâncias Intercalantes/metabolismo , Modelos Moleculares , Oligodesoxirribonucleotídeos/síntese química , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...